Papers
Topics
Authors
Recent
2000 character limit reached

Fine-tuning Pretrained Multilingual BERT Model for Indonesian Aspect-based Sentiment Analysis (2103.03732v1)

Published 5 Mar 2021 in cs.CL

Abstract: Although previous research on Aspect-based Sentiment Analysis (ABSA) for Indonesian reviews in hotel domain has been conducted using CNN and XGBoost, its model did not generalize well in test data and high number of OOV words contributed to misclassification cases. Nowadays, most state-of-the-art results for wide array of NLP tasks are achieved by utilizing pretrained language representation. In this paper, we intend to incorporate one of the foremost language representation model, BERT, to perform ABSA in Indonesian reviews dataset. By combining multilingual BERT (m-BERT) with task transformation method, we manage to achieve significant improvement by 8% on the F1-score compared to the result from our previous study.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.