Papers
Topics
Authors
Recent
2000 character limit reached

Fine-tuning Pretrained Multilingual BERT Model for Indonesian Aspect-based Sentiment Analysis

Published 5 Mar 2021 in cs.CL | (2103.03732v1)

Abstract: Although previous research on Aspect-based Sentiment Analysis (ABSA) for Indonesian reviews in hotel domain has been conducted using CNN and XGBoost, its model did not generalize well in test data and high number of OOV words contributed to misclassification cases. Nowadays, most state-of-the-art results for wide array of NLP tasks are achieved by utilizing pretrained language representation. In this paper, we intend to incorporate one of the foremost language representation model, BERT, to perform ABSA in Indonesian reviews dataset. By combining multilingual BERT (m-BERT) with task transformation method, we manage to achieve significant improvement by 8% on the F1-score compared to the result from our previous study.

Citations (18)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.