Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Predictive Coding Can Do Exact Backpropagation on Convolutional and Recurrent Neural Networks (2103.03725v1)

Published 5 Mar 2021 in cs.LG

Abstract: Predictive coding networks (PCNs) are an influential model for information processing in the brain. They have appealing theoretical interpretations and offer a single mechanism that accounts for diverse perceptual phenomena of the brain. On the other hand, backpropagation (BP) is commonly regarded to be the most successful learning method in modern machine learning. Thus, it is exciting that recent work formulates inference learning (IL) that trains PCNs to approximate BP. However, there are several remaining critical issues: (i) IL is an approximation to BP with unrealistic/non-trivial requirements, (ii) IL approximates BP in single-step weight updates; whether it leads to the same point as BP after the weight updates are conducted for more steps is unknown, and (iii) IL is computationally significantly more costly than BP. To solve these issues, a variant of IL that is strictly equivalent to BP in fully connected networks has been proposed. In this work, we build on this result by showing that it also holds for more complex architectures, namely, convolutional neural networks and (many-to-one) recurrent neural networks. To our knowledge, we are the first to show that a biologically plausible algorithm is able to exactly replicate the accuracy of BP on such complex architectures, bridging the existing gap between IL and BP, and setting an unprecedented performance for PCNs, which can now be considered as efficient alternatives to BP.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube