Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Reduced basis stabilization for the unsteady Stokes and Navier-Stokes equations (2103.03553v2)

Published 5 Mar 2021 in math.NA and cs.NA

Abstract: In the Reduced Basis approximation of Stokes and Navier-Stokes problems, the Galerkin projection on the reduced spaces does not necessarily preserved the inf-sup stability even if the snapshots were generated through a stable full order method. Therefore, in this work we aim at building a stabilized Reduced Basis (RB) method for the approximation of unsteady Stokes and Navier-Stokes problems in parametric reduced order settings. This work extends the results presented for parametrized steady Stokes and Navier-Stokes problems in a work of ours \cite{Ali2018}. We apply classical residual-based stabilization techniques for finite element methods in full order, and then the RB method is introduced as Galerkin projection onto RB space. We compare this approach with supremizer enrichment options through several numerical experiments. We are interested to (numerically) guarantee the parametrized reduced inf-sup condition and to reduce the online computational costs.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.