Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Vicinal and categorical domain adaptation (2103.03460v1)

Published 5 Mar 2021 in cs.CV and stat.ML

Abstract: Unsupervised domain adaptation aims to learn a task classifier that performs well on the unlabeled target domain, by utilizing the labeled source domain. Inspiring results have been acquired by learning domain-invariant deep features via domain-adversarial training. However, its parallel design of task and domain classifiers limits the ability to achieve a finer category-level domain alignment. To promote categorical domain adaptation (CatDA), based on a joint category-domain classifier, we propose novel losses of adversarial training at both domain and category levels. Since the joint classifier can be regarded as a concatenation of individual task classifiers respectively for the two domains, our design principle is to enforce consistency of category predictions between the two task classifiers. Moreover, we propose a concept of vicinal domains whose instances are produced by a convex combination of pairs of instances respectively from the two domains. Intuitively, alignment of the possibly infinite number of vicinal domains enhances that of original domains. We propose novel adversarial losses for vicinal domain adaptation (VicDA) based on CatDA, leading to Vicinal and Categorical Domain Adaptation (ViCatDA). We also propose Target Discriminative Structure Recovery (TDSR) to recover the intrinsic target discrimination damaged by adversarial feature alignment. We also analyze the principles underlying the ability of our key designs to align the joint distributions. Extensive experiments on several benchmark datasets demonstrate that we achieve the new state of the art.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)