Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learning to Schedule DAG Tasks (2103.03412v1)

Published 5 Mar 2021 in cs.LG and cs.AI

Abstract: Scheduling computational tasks represented by directed acyclic graphs (DAGs) is challenging because of its complexity. Conventional scheduling algorithms rely heavily on simple heuristics such as shortest job first (SJF) and critical path (CP), and are often lacking in scheduling quality. In this paper, we present a novel learning-based approach to scheduling DAG tasks. The algorithm employs a reinforcement learning agent to iteratively add directed edges to the DAG, one at a time, to enforce ordering (i.e., priorities of execution and resource allocation) of "tricky" job nodes. By doing so, the original DAG scheduling problem is dramatically reduced to a much simpler proxy problem, on which heuristic scheduling algorithms such as SJF and CP can be efficiently improved. Our approach can be easily applied to any existing heuristic scheduling algorithms. On the benchmark dataset of TPC-H, we show that our learning based approach can significantly improve over popular heuristic algorithms and consistently achieves the best performance among several methods under a variety of settings.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.