Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

End-to-End Mispronunciation Detection and Diagnosis From Raw Waveforms (2103.03023v4)

Published 4 Mar 2021 in eess.AS, cs.MM, and cs.SD

Abstract: Mispronunciation detection and diagnosis (MDD) is designed to identify pronunciation errors and provide instructive feedback to guide non-native language learners, which is a core component in computer-assisted pronunciation training (CAPT) systems. However, MDD often suffers from the data-sparsity problem due to that collecting non-native data and the associated annotations is time-consuming and labor-intensive. To address this issue, we explore a fully end-to-end (E2E) neural model for MDD, which processes learners' speech directly based on raw waveforms. Compared to conventional hand-crafted acoustic features, raw waveforms retain more acoustic phenomena and potentially can help neural networks discover better and more customized representations. To this end, our MDD model adopts a co-called SincNet module to take input a raw waveform and covert it to a suitable vector representation sequence. SincNet employs the cardinal sine (sinc) function to implement learnable bandpass filters, drawing inspiration from the convolutional neural network (CNN). By comparison to CNN, SincNet has fewer parameters and is more amenable to human interpretation. Extensive experiments are conducted on the L2-ARCTIC dataset, which is a publicly-available non-native English speech corpus compiled for research on CAPT. We find that the sinc filters of SincNet can be adapted quickly for non-native language learners of different nationalities. Furthermore, our model can achieve comparable mispronunciation detection performance in relation to state-of-the-art E2E MDD models that take input the standard handcrafted acoustic features. Besides that, our model also provides considerable improvements on phone error rate (PER) and diagnosis accuracy.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.