Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Learning-based Adaptive Control using Contraction Theory (2103.02987v3)

Published 4 Mar 2021 in cs.LG, cs.RO, cs.SY, eess.SY, and math.OC

Abstract: Adaptive control is subject to stability and performance issues when a learned model is used to enhance its performance. This paper thus presents a deep learning-based adaptive control framework for nonlinear systems with multiplicatively-separable parametrization, called adaptive Neural Contraction Metric (aNCM). The aNCM approximates real-time optimization for computing a differential Lyapunov function and a corresponding stabilizing adaptive control law by using a Deep Neural Network (DNN). The use of DNNs permits real-time implementation of the control law and broad applicability to a variety of nonlinear systems with parametric and nonparametric uncertainties. We show using contraction theory that the aNCM ensures exponential boundedness of the distance between the target and controlled trajectories in the presence of parametric uncertainties of the model, learning errors caused by aNCM approximation, and external disturbances. Its superiority to the existing robust and adaptive control methods is demonstrated using a cart-pole balancing model.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.