Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On subgraph complementation to H-free graphs (2103.02936v1)

Published 4 Mar 2021 in cs.DS

Abstract: For a class $\mathcal{G}$ of graphs, the problem SUBGRAPH COMPLEMENT TO $\mathcal{G}$ asks whether one can find a subset $S$ of vertices of the input graph $G$ such that complementing the subgraph induced by $S$ in $G$ results in a graph in $\mathcal{G}$. We investigate the complexity of the problem when $\mathcal{G}$ is $H$-free for $H$ being a complete graph, a star, a path, or a cycle. We obtain the following results: - When $H$ is a $K_t$ (a complete graph on $t$ vertices) for any fixed $t\geq 1$, the problem is solvable in polynomial-time. This applies even when $\mathcal{G}$ is a subclass of $K_t$-free graphs recognizable in polynomial-time, for example, the class of $(t-2)$-degenerate graphs. - When $H$ is a $K_{1,t}$ (a star graph on $t+1$ vertices), we obtain that the problem is NP-complete for every $t\geq 5$. This, along with known results, leaves only two unresolved cases - $K_{1,3}$ and $K_{1,4}$. - When $H$ is a $P_t$ (a path on $t$ vertices), we obtain that the problem is NP-complete for every $t\geq 7$, leaving behind only two unresolved cases - $P_5$ and $P_6$. - When $H$ is a $C_t$ (a cycle on $t$ vertices), we obtain that the problem is NP-complete for every $t\geq 8$, leaving behind four unresolved cases - $C_4, C_5, C_6,$ and $C_7$. Further, we prove that these hard problems do not admit subexponential-time algorithms (algorithms running in time $2{o(|V(G)|)}$), assuming the Exponential Time Hypothesis. A simple complementation argument implies that results for $\mathcal{G}$ are applicable for $\overline{\mathcal{G}}$, thereby obtaining similar results for $H$ being the complement of a complete graph, a star, a path, or a cycle. Our results generalize two main results and resolve one open question by Fomin et al. (Algorithmica, 2020).

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube