Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Malware Classification Using Long Short-Term Memory Models (2103.02746v1)

Published 3 Mar 2021 in cs.CR and cs.LG

Abstract: Signature and anomaly based techniques are the quintessential approaches to malware detection. However, these techniques have become increasingly ineffective as malware has become more sophisticated and complex. Researchers have therefore turned to deep learning to construct better performing model. In this paper, we create four different long-short term memory (LSTM) based models and train each to classify malware samples from 20 families. Our features consist of opcodes extracted from malware executables. We employ techniques used in NLP, including word embedding and bidirection LSTMs (biLSTM), and we also use convolutional neural networks (CNN). We find that a model consisting of word embedding, biLSTMs, and CNN layers performs best in our malware classification experiments.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.