Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Combinatorial Bandits without Total Order for Arms (2103.02741v1)

Published 3 Mar 2021 in cs.LG

Abstract: We consider the combinatorial bandits problem, where at each time step, the online learner selects a size-$k$ subset $s$ from the arms set $\mathcal{A}$, where $\left|\mathcal{A}\right| = n$, and observes a stochastic reward of each arm in the selected set $s$. The goal of the online learner is to minimize the regret, induced by not selecting $s*$ which maximizes the expected total reward. Specifically, we focus on a challenging setting where 1) the reward distribution of an arm depends on the set $s$ it is part of, and crucially 2) there is \textit{no total order} for the arms in $\mathcal{A}$. In this paper, we formally present a reward model that captures set-dependent reward distribution and assumes no total order for arms. Correspondingly, we propose an Upper Confidence Bound (UCB) algorithm that maintains UCB for each individual arm and selects the arms with top-$k$ UCB. We develop a novel regret analysis and show an $O\left(\frac{k2 n \log T}{\epsilon}\right)$ gap-dependent regret bound as well as an $O\left(k2\sqrt{n T \log T}\right)$ gap-independent regret bound. We also provide a lower bound for the proposed reward model, which shows our proposed algorithm is near-optimal for any constant $k$. Empirical results on various reward models demonstrate the broad applicability of our algorithm.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.