Papers
Topics
Authors
Recent
2000 character limit reached

Combinatorial Bandits without Total Order for Arms (2103.02741v1)

Published 3 Mar 2021 in cs.LG

Abstract: We consider the combinatorial bandits problem, where at each time step, the online learner selects a size-$k$ subset $s$ from the arms set $\mathcal{A}$, where $\left|\mathcal{A}\right| = n$, and observes a stochastic reward of each arm in the selected set $s$. The goal of the online learner is to minimize the regret, induced by not selecting $s*$ which maximizes the expected total reward. Specifically, we focus on a challenging setting where 1) the reward distribution of an arm depends on the set $s$ it is part of, and crucially 2) there is \textit{no total order} for the arms in $\mathcal{A}$. In this paper, we formally present a reward model that captures set-dependent reward distribution and assumes no total order for arms. Correspondingly, we propose an Upper Confidence Bound (UCB) algorithm that maintains UCB for each individual arm and selects the arms with top-$k$ UCB. We develop a novel regret analysis and show an $O\left(\frac{k2 n \log T}{\epsilon}\right)$ gap-dependent regret bound as well as an $O\left(k2\sqrt{n T \log T}\right)$ gap-independent regret bound. We also provide a lower bound for the proposed reward model, which shows our proposed algorithm is near-optimal for any constant $k$. Empirical results on various reward models demonstrate the broad applicability of our algorithm.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.