Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Natural Language Understanding for Argumentative Dialogue Systems in the Opinion Building Domain (2103.02691v2)

Published 3 Mar 2021 in cs.CL and cs.LG

Abstract: This paper introduces a natural language understanding (NLU) framework for argumentative dialogue systems in the information-seeking and opinion building domain. The proposed framework consists of two sub-models, namely intent classifier and argument similarity. Intent classifier model stacks BiLSTM with attention mechanism on top of the pre-trained BERT model and fine-tune the model for recognizing the user intent, whereas the argument similarity model employs BERT+BiLSTM for identifying system arguments the user refers to in his or her natural language utterances. Our model is evaluated in an argumentative dialogue system that engages the user to inform him-/herself about a controversial topic by exploring pro and con arguments and build his/her opinion towards the topic. In order to evaluate the proposed approach, we collect user utterances for the interaction with the respective system labeling intent and referenced argument in an extensive online study. The data collection includes multiple topics and two different user types (native English speakers from the UK and non-native English speakers from China). Additionally, we evaluate the proposed intent classifier and argument similarity models separately on the publicly available Banking77 and STS benchmark datasets. The evaluation indicates a clear advantage of the utilized techniques over baseline approaches on several datasets, as well as the robustness of the proposed approach against new topics and different language proficiency as well as the cultural background of the user. Furthermore, results show that our intent classifier model outperforms DIET, DistillBERT, and BERT fine-tuned models in few-shot setups (i.e., with 10, 20, or 30 labeled examples per intent) and full data setup.

Citations (31)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube