Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Cross-View Regularization for Domain Adaptive Panoptic Segmentation (2103.02584v1)

Published 3 Mar 2021 in cs.CV

Abstract: Panoptic segmentation unifies semantic segmentation and instance segmentation which has been attracting increasing attention in recent years. However, most existing research was conducted under a supervised learning setup whereas unsupervised domain adaptive panoptic segmentation which is critical in different tasks and applications is largely neglected. We design a domain adaptive panoptic segmentation network that exploits inter-style consistency and inter-task regularization for optimal domain adaptive panoptic segmentation. The inter-style consistency leverages geometric invariance across the same image of the different styles which fabricates certain self-supervisions to guide the network to learn domain-invariant features. The inter-task regularization exploits the complementary nature of instance segmentation and semantic segmentation and uses it as a constraint for better feature alignment across domains. Extensive experiments over multiple domain adaptive panoptic segmentation tasks (e.g., synthetic-to-real and real-to-real) show that our proposed network achieves superior segmentation performance as compared with the state-of-the-art.

Citations (57)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.