Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Reinforcement Learning with External Knowledge by using Logical Neural Networks (2103.02363v1)

Published 3 Mar 2021 in cs.AI

Abstract: Conventional deep reinforcement learning methods are sample-inefficient and usually require a large number of training trials before convergence. Since such methods operate on an unconstrained action set, they can lead to useless actions. A recent neuro-symbolic framework called the Logical Neural Networks (LNNs) can simultaneously provide key-properties of both neural networks and symbolic logic. The LNNs functions as an end-to-end differentiable network that minimizes a novel contradiction loss to learn interpretable rules. In this paper, we utilize LNNs to define an inference graph using basic logical operations, such as AND and NOT, for faster convergence in reinforcement learning. Specifically, we propose an integrated method that enables model-free reinforcement learning from external knowledge sources in an LNNs-based logical constrained framework such as action shielding and guide. Our results empirically demonstrate that our method converges faster compared to a model-free reinforcement learning method that doesn't have such logical constraints.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.