Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Riemannian thresholding methods for row-sparse and low-rank matrix recovery (2103.02356v2)

Published 3 Mar 2021 in math.OC, cs.NA, and math.NA

Abstract: In this paper, we present modifications of the iterative hard thresholding (IHT) method for recovery of jointly row-sparse and low-rank matrices. In particular a Riemannian version of IHT is considered which significantly reduces computational cost of the gradient projection in the case of rank-one measurement operators, which have concrete applications in blind deconvolution. Experimental results are reported that show near-optimal recovery for Gaussian and rank-one measurements, and that adaptive stepsizes give crucial improvement. A Riemannian proximal gradient method is derived for the special case of unknown sparsity.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube