Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Distributional Formal Semantics (2103.01713v1)

Published 2 Mar 2021 in cs.CL, cs.AI, cs.IT, and math.IT

Abstract: Natural language semantics has recently sought to combine the complementary strengths of formal and distributional approaches to meaning. More specifically, proposals have been put forward to augment formal semantic machinery with distributional meaning representations, thereby introducing the notion of semantic similarity into formal semantics, or to define distributional systems that aim to incorporate formal notions such as entailment and compositionality. However, given the fundamentally different 'representational currency' underlying formal and distributional approaches - models of the world versus linguistic co-occurrence - their unification has proven extremely difficult. Here, we define a Distributional Formal Semantics that integrates distributionality into a formal semantic system on the level of formal models. This approach offers probabilistic, distributed meaning representations that are also inherently compositional, and that naturally capture fundamental semantic notions such as quantification and entailment. Furthermore, we show how the probabilistic nature of these representations allows for probabilistic inference, and how the information-theoretic notion of "information" (measured in terms of Entropy and Surprisal) naturally follows from it. Finally, we illustrate how meaning representations can be derived incrementally from linguistic input using a recurrent neural network model, and how the resultant incremental semantic construction procedure intuitively captures key semantic phenomena, including negation, presupposition, and anaphoricity.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.