Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 347 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Deep Perceptual Image Quality Assessment for Compression (2103.01114v2)

Published 1 Mar 2021 in cs.CV and eess.IV

Abstract: Lossy Image compression is necessary for efficient storage and transfer of data. Typically the trade-off between bit-rate and quality determines the optimal compression level. This makes the image quality metric an integral part of any imaging system. While the existing full-reference metrics such as PSNR and SSIM may be less sensitive to perceptual quality, the recently introduced learning methods may fail to generalize to unseen data. In this paper we propose the largest image compression quality dataset to date with human perceptual preferences, enabling the use of deep learning, and we develop a full reference perceptual quality assessment metric for lossy image compression that outperforms the existing state-of-the-art methods. We show that the proposed model can effectively learn from thousands of examples available in the new dataset, and consequently it generalizes better to other unseen datasets of human perceptual preference.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.