Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On performance bound estimation in NMPC with time-varying terminal cost (2103.01015v1)

Published 1 Mar 2021 in eess.SY, cs.SY, and math.OC

Abstract: Model predictive control (MPC) schemes are commonly designed with fixed, i.e., time-invariant, horizon length and cost functions. If no stabilizing terminal ingredients are used, stability can be guaranteed via a sufficiently long horizon. A suboptimality index can be derived that gives bounds on the performance of the MPC law over an infinite-horizon (IH). While for time-invariant schemes such index can be computed offline, less attention has been paid to time-varying strategies with adapting cost function which can be found, e.g., in learning-based optimal control. This work addresses the performance bounds of nonlinear MPC with stabilizing horizon and time-varying terminal cost. A scheme is proposed that uses the decay of the optimal finite-horizon cost and convolutes a history stack to predict the bounds on the IH performance. Based on online information on the decay rate, the performance bound estimate is improved while the terminal cost is adapted using methods from adaptive dynamic programming. The adaptation of the terminal cost leads to performance improvement over a time-invariant scheme with the same horizon length. The approach is demonstrated in a case study.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.