Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Error Estimates for the Deep Ritz Method with Boundary Penalty (2103.01007v4)

Published 1 Mar 2021 in math.NA, cs.LG, and cs.NA

Abstract: We estimate the error of the Deep Ritz Method for linear elliptic equations. For Dirichlet boundary conditions, we estimate the error when the boundary values are imposed through the boundary penalty method. Our results apply to arbitrary sets of ansatz functions and estimate the error in dependence of the optimization accuracy, the approximation capabilities of the ansatz class and -- in the case of Dirichlet boundary values -- the penalization strength $\lambda$. To the best of our knowledge, our results are presently the only ones in the literature that treat the case of Dirichlet boundary conditions in full generality, i.e., without a lower order term that leads to coercivity on all of $H1(\Omega)$. Further, we discuss the implications of our results for ansatz classes which are given through ReLU networks and the relation to existing estimates for finite element functions. For high dimensional problems our results show that the favourable approximation capabilities of neural networks for smooth functions are inherited by the Deep Ritz Method.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.