Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

RAGA: Relation-aware Graph Attention Networks for Global Entity Alignment (2103.00791v1)

Published 1 Mar 2021 in cs.CL and cs.AI

Abstract: Entity alignment (EA) is the task to discover entities referring to the same real-world object from different knowledge graphs (KGs), which is the most crucial step in integrating multi-source KGs. The majority of the existing embeddings-based entity alignment methods embed entities and relations into a vector space based on relation triples of KGs for local alignment. As these methods insufficiently consider the multiple relations between entities, the structure information of KGs has not been fully leveraged. In this paper, we propose a novel framework based on Relation-aware Graph Attention Networks to capture the interactions between entities and relations. Our framework adopts the self-attention mechanism to spread entity information to the relations and then aggregate relation information back to entities. Furthermore, we propose a global alignment algorithm to make one-to-one entity alignments with a fine-grained similarity matrix. Experiments on three real-world cross-lingual datasets show that our framework outperforms the state-of-the-art methods.

Citations (46)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.