Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

LocalDrop: A Hybrid Regularization for Deep Neural Networks (2103.00719v1)

Published 1 Mar 2021 in cs.LG, cs.AI, and stat.ML

Abstract: In neural networks, developing regularization algorithms to settle overfitting is one of the major study areas. We propose a new approach for the regularization of neural networks by the local Rademacher complexity called LocalDrop. A new regularization function for both fully-connected networks (FCNs) and convolutional neural networks (CNNs), including drop rates and weight matrices, has been developed based on the proposed upper bound of the local Rademacher complexity by the strict mathematical deduction. The analyses of dropout in FCNs and DropBlock in CNNs with keep rate matrices in different layers are also included in the complexity analyses. With the new regularization function, we establish a two-stage procedure to obtain the optimal keep rate matrix and weight matrix to realize the whole training model. Extensive experiments have been conducted to demonstrate the effectiveness of LocalDrop in different models by comparing it with several algorithms and the effects of different hyperparameters on the final performances.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.