Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Dynamic Stochastic Blockmodel Regression for Network Data: Application to International Militarized Conflicts (2103.00702v2)

Published 1 Mar 2021 in stat.AP and cs.SI

Abstract: A primary goal of social science research is to understand how latent group memberships predict the dynamic process of network evolution. In the modeling of international militarized conflicts, for instance, scholars hypothesize that membership in geopolitical coalitions shapes the decision to engage in conflict. Such theories explain the ways in which nodal and dyadic characteristics affect the evolution of conflict patterns over time via their effects on group memberships. To aid the empirical testing of these arguments, we develop a dynamic model of network data by combining a hidden Markov model with a mixed-membership stochastic blockmodel that identifies latent groups underlying the network structure. Unlike existing models, we incorporate covariates that predict dynamic node memberships in latent groups as well as the direct formation of edges between dyads. While prior substantive research often assumes the decision to engage in international militarized conflict is independent across states and static over time, we demonstrate that conflict is driven by states' evolving membership in geopolitical blocs. Changes in monadic covariates like democracy shift states between coalitions, generating heterogeneous effects on conflict over time and across states. The proposed methodology, which relies on a variational approximation to a collapsed posterior distribution as well as stochastic optimization for scalability, is implemented through an open-source software package.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.