Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Time Matters: Exploring the Effects of Urgency and Reaction Speed in Automated Traders (2103.00600v1)

Published 28 Feb 2021 in cs.MA, cs.CE, q-fin.CP, and q-fin.TR

Abstract: We consider issues of time in automated trading strategies in simulated financial markets containing a single exchange with public limit order book and continuous double auction matching. In particular, we explore two effects: (i) reaction speed - the time taken for trading strategies to calculate a response to market events; and (ii) trading urgency - the sensitivity of trading strategies to approaching deadlines. Much of the literature on trading agents focuses on optimising pricing strategies only and ignores the effects of time, while real-world markets continue to experience a race to zero latency, as automated trading systems compete to quickly access information and act in the market ahead of others. We demonstrate that modelling reaction speed can significantly alter previously published results, with simple strategies such as SHVR outperforming more complex adaptive algorithms such as AA. We also show that adding a pace parameter to ZIP traders (ZIP-Pace, or ZIPP) can create a sense of urgency that significantly improves profitability.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.