Emergent Mind

Abstract

Deep neural networks are known to be data-driven and label noise can have a marked impact on model performance. Recent studies have shown great robustness to classic image recognition even under a high noisy rate. In medical applications, learning from datasets with label noise is more challenging since medical imaging datasets tend to have asymmetric (class-dependent) noise and suffer from high observer variability. In this paper, we systematically discuss and define the two common types of label noise in medical images - disagreement label noise from inconsistency expert opinions and single-target label noise from wrong diagnosis record. We then propose an uncertainty estimation-based framework to handle these two label noise amid the medical image classification task. We design a dual-uncertainty estimation approach to measure the disagreement label noise and single-target label noise via Direct Uncertainty Prediction and Monte-Carlo-Dropout. A boosting-based curriculum training procedure is later introduced for robust learning. We demonstrate the effectiveness of our method by conducting extensive experiments on three different diseases: skin lesions, prostate cancer, and retinal diseases. We also release a large re-engineered database that consists of annotations from more than ten ophthalmologists with an unbiased golden standard dataset for evaluation and benchmarking.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.