Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

SpikeDyn: A Framework for Energy-Efficient Spiking Neural Networks with Continual and Unsupervised Learning Capabilities in Dynamic Environments (2103.00424v1)

Published 28 Feb 2021 in cs.NE, cs.AI, cs.AR, and cs.LG

Abstract: Spiking Neural Networks (SNNs) bear the potential of efficient unsupervised and continual learning capabilities because of their biological plausibility, but their complexity still poses a serious research challenge to enable their energy-efficient design for resource-constrained scenarios (like embedded systems, IoT-Edge, etc.). We propose SpikeDyn, a comprehensive framework for energy-efficient SNNs with continual and unsupervised learning capabilities in dynamic environments, for both the training and inference phases. It is achieved through the following multiple diverse mechanisms: 1) reduction of neuronal operations, by replacing the inhibitory neurons with direct lateral inhibitions; 2) a memory- and energy-constrained SNN model search algorithm that employs analytical models to estimate the memory footprint and energy consumption of different candidate SNN models and selects a Pareto-optimal SNN model; and 3) a lightweight continual and unsupervised learning algorithm that employs adaptive learning rates, adaptive membrane threshold potential, weight decay, and reduction of spurious updates. Our experimental results show that, for a network with 400 excitatory neurons, our SpikeDyn reduces the energy consumption on average by 51% for training and by 37% for inference, as compared to the state-of-the-art. Due to the improved learning algorithm, SpikeDyn provides on avg. 21% accuracy improvement over the state-of-the-art, for classifying the most recently learned task, and by 8% on average for the previously learned tasks.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.