Papers
Topics
Authors
Recent
2000 character limit reached

High-Dimensional Bayesian Optimization with Sparse Axis-Aligned Subspaces (2103.00349v2)

Published 27 Feb 2021 in cs.LG and stat.ML

Abstract: Bayesian optimization (BO) is a powerful paradigm for efficient optimization of black-box objective functions. High-dimensional BO presents a particular challenge, in part because the curse of dimensionality makes it difficult to define -- as well as do inference over -- a suitable class of surrogate models. We argue that Gaussian process surrogate models defined on sparse axis-aligned subspaces offer an attractive compromise between flexibility and parsimony. We demonstrate that our approach, which relies on Hamiltonian Monte Carlo for inference, can rapidly identify sparse subspaces relevant to modeling the unknown objective function, enabling sample-efficient high-dimensional BO. In an extensive suite of experiments comparing to existing methods for high-dimensional BO we demonstrate that our algorithm, Sparse Axis-Aligned Subspace BO (SAASBO), achieves excellent performance on several synthetic and real-world problems without the need to set problem-specific hyperparameters.

Citations (114)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.