Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Novel Adaptive Deep Network for Building Footprint Segmentation (2103.00286v1)

Published 27 Feb 2021 in cs.CV, cs.LG, cs.NA, eess.IV, and math.NA

Abstract: Building footprint segmentations for high resolution images are increasingly demanded for many remote sensing applications. By the emerging deep learning approaches, segmentation networks have made significant advances in the semantic segmentation of objects. However, these advances and the increased access to satellite images require the generation of accurate object boundaries in satellite images. In the current paper, we propose a novel network-based on Pix2Pix methodology to solve the problem of inaccurate boundaries obtained by converting satellite images into maps using segmentation networks in order to segment building footprints. To define the new network named G2G, our framework includes two generators where the first generator extracts localization features in order to merge them with the boundary features extracted from the second generator to segment all detailed building edges. Moreover, different strategies are implemented to enhance the quality of the proposed networks' results, implying that the proposed network outperforms state-of-the-art networks in segmentation accuracy with a large margin for all evaluation metrics. The implementation is available at https://github.com/A2Amir/A-Novel-Adaptive-Deep-Network-for-Building-Footprint-Segmentation.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.