Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Text-driven object affordance for guiding grasp-type recognition in multimodal robot teaching (2103.00268v2)

Published 27 Feb 2021 in cs.RO, cs.CV, and cs.HC

Abstract: This study investigates how text-driven object affordance, which provides prior knowledge about grasp types for each object, affects image-based grasp-type recognition in robot teaching. The researchers created labeled datasets of first-person hand images to examine the impact of object affordance on recognition performance. They evaluated scenarios with real and illusory objects, considering mixed reality teaching conditions where visual object information may be limited. The results demonstrate that object affordance improves image-based recognition by filtering out unlikely grasp types and emphasizing likely ones. The effectiveness of object affordance was more pronounced when there was a stronger bias towards specific grasp types for each object. These findings highlight the significance of object affordance in multimodal robot teaching, regardless of whether real objects are present in the images. Sample code is available on https://github.com/microsoft/arr-grasp-type-recognition.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com