Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Learning with Smooth Hinge Losses (2103.00233v2)

Published 27 Feb 2021 in cs.LG

Abstract: Due to the non-smoothness of the Hinge loss in SVM, it is difficult to obtain a faster convergence rate with modern optimization algorithms. In this paper, we introduce two smooth Hinge losses $\psi_G(\alpha;\sigma)$ and $\psi_M(\alpha;\sigma)$ which are infinitely differentiable and converge to the Hinge loss uniformly in $\alpha$ as $\sigma$ tends to $0$. By replacing the Hinge loss with these two smooth Hinge losses, we obtain two smooth support vector machines(SSVMs), respectively. Solving the SSVMs with the Trust Region Newton method (TRON) leads to two quadratically convergent algorithms. Experiments in text classification tasks show that the proposed SSVMs are effective in real-world applications. We also introduce a general smooth convex loss function to unify several commonly-used convex loss functions in machine learning. The general framework provides smooth approximation functions to non-smooth convex loss functions, which can be used to obtain smooth models that can be solved with faster convergent optimization algorithms.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.