Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

EDS-MEMBED: Multi-sense embeddings based on enhanced distributional semantic structures via a graph walk over word senses (2103.00232v1)

Published 27 Feb 2021 in cs.CL and cs.LG

Abstract: Several language applications often require word semantics as a core part of their processing pipeline, either as precise meaning inference or semantic similarity. Multi-sense embeddings (M-SE) can be exploited for this important requirement. M-SE seeks to represent each word by their distinct senses in order to resolve the conflation of meanings of words as used in different contexts. Previous works usually approach this task by training a model on a large corpus and often ignore the effect and usefulness of the semantic relations offered by lexical resources. However, even with large training data, coverage of all possible word senses is still an issue. In addition, a considerable percentage of contextual semantic knowledge are never learned because a huge amount of possible distributional semantic structures are never explored. In this paper, we leverage the rich semantic structures in WordNet using a graph-theoretic walk technique over word senses to enhance the quality of multi-sense embeddings. This algorithm composes enriched texts from the original texts. Furthermore, we derive new distributional semantic similarity measures for M-SE from prior ones. We adapt these measures to word sense disambiguation (WSD) aspect of our experiment. We report evaluation results on 11 benchmark datasets involving WSD and Word Similarity tasks and show that our method for enhancing distributional semantic structures improves embeddings quality on the baselines. Despite the small training data, it achieves state-of-the-art performance on some of the datasets.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.