Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

HIR: An MLIR-based Intermediate Representation for Hardware Accelerator Description (2103.00194v1)

Published 27 Feb 2021 in cs.AR and cs.PL

Abstract: The emergence of machine learning, image and audio processing on edge devices has motivated research towards power efficient custom hardware accelerators. Though FPGAs are an ideal target for energy efficient custom accelerators, the difficulty of hardware design and the lack of vendor agnostic, standardized hardware compilation infrastructure has hindered their adoption. This paper introduces HIR, an MLIR-based intermediate representation (IR) to describe hardware accelerator designs. HIR combines high level language features, such as loops and multi-dimensional tensors, with programmer defined explicit scheduling, to provide a high-level IR suitable for DSL compiler pipelines without compromising control over the micro-architecture of the accelerator. HIR's explicit schedules allow it to express fine-grained, synchronization-free parallelism and optimizations such as retiming and pipelining. Built as a dialect in MLIR, it draws from best IR practices learnt from communities like those of LLVM. While offering rich optimization opportunities and a high level abstraction, HIR enables sharing of optimizations, utilities and passes with software compiler infrastructure. Our implementation shows that the code generation time of the HIR code generator is on average 1112x lower than that of Xilinx Vivado HLS on a range of kernels without a compromise on the quality of the generated hardware. We believe that these are significant steps forward in the design of IRs for hardware synthesis and in equipping domain-specific languages with a productive and performing compilation path to custom hardware acceleration.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.