Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Noisy Truncated SGD: Optimization and Generalization (2103.00075v2)

Published 26 Feb 2021 in cs.LG

Abstract: Recent empirical work on stochastic gradient descent (SGD) applied to over-parameterized deep learning has shown that most gradient components over epochs are quite small. Inspired by such observations, we rigorously study properties of Truncated SGD (T-SGD), that truncates the majority of small gradient components to zeros. Considering non-convex optimization problems, we show that the convergence rate of T-SGD matches the order of vanilla SGD. We also establish the generalization error bound for T-SGD. Further, we propose Noisy Truncated SGD (NT-SGD), which adds Gaussian noise to the truncated gradients. We prove that NT-SGD has the same convergence rate as T-SGD for non-convex optimization problems. We demonstrate that with the help of noise, NT-SGD can provably escape from saddle points and requires less noise compared to previous related work. We also prove that NT-SGD achieves better generalization error bound compared to T-SGD because of the noise. Our generalization analysis is based on uniform stability and we show that additional noise in the gradient update can boost the stability. Our experiments on a variety of benchmark datasets (MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100) with various networks (VGG and ResNet) validate the theoretical properties of NT-SGD, i.e., NT-SGD matches the speed and accuracy of vanilla SGD while effectively working with sparse gradients, and can successfully escape poor local minima.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.