Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

What Doesn't Kill You Makes You Robust(er): How to Adversarially Train against Data Poisoning (2102.13624v2)

Published 26 Feb 2021 in cs.LG, cs.CR, and cs.CV

Abstract: Data poisoning is a threat model in which a malicious actor tampers with training data to manipulate outcomes at inference time. A variety of defenses against this threat model have been proposed, but each suffers from at least one of the following flaws: they are easily overcome by adaptive attacks, they severely reduce testing performance, or they cannot generalize to diverse data poisoning threat models. Adversarial training, and its variants, are currently considered the only empirically strong defense against (inference-time) adversarial attacks. In this work, we extend the adversarial training framework to defend against (training-time) data poisoning, including targeted and backdoor attacks. Our method desensitizes networks to the effects of such attacks by creating poisons during training and injecting them into training batches. We show that this defense withstands adaptive attacks, generalizes to diverse threat models, and incurs a better performance trade-off than previous defenses such as DP-SGD or (evasion) adversarial training.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube