Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning (2102.13515v3)

Published 24 Feb 2021 in cs.LG, cs.AI, and stat.ML

Abstract: Designing agents that acquire knowledge autonomously and use it to solve new tasks efficiently is an important challenge in reinforcement learning. Knowledge acquired during an unsupervised pre-training phase is often transferred by fine-tuning neural network weights once rewards are exposed, as is common practice in supervised domains. Given the nature of the reinforcement learning problem, we argue that standard fine-tuning strategies alone are not enough for efficient transfer in challenging domains. We introduce Behavior Transfer (BT), a technique that leverages pre-trained policies for exploration and that is complementary to transferring neural network weights. Our experiments show that, when combined with large-scale pre-training in the absence of rewards, existing intrinsic motivation objectives can lead to the emergence of complex behaviors. These pre-trained policies can then be leveraged by BT to discover better solutions than without pre-training, and combining BT with standard fine-tuning strategies results in additional benefits. The largest gains are generally observed in domains requiring structured exploration, including settings where the behavior of the pre-trained policies is misaligned with the downstream task.

Citations (24)

Summary

We haven't generated a summary for this paper yet.