Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 46 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 40 tok/s Pro
2000 character limit reached

Derivative-Free Multiobjective Trust Region Descent Method Using Radial Basis Function Surrogate Models (2102.13444v2)

Published 26 Feb 2021 in math.OC, cs.NA, and math.NA

Abstract: We present a flexible trust region descend algorithm for unconstrained and convexly constrained multiobjective optimization problems. It is targeted at heterogeneous and expensive problems, i.e., problems that have at least one objective function that is computationally expensive. The method is derivative-free in the sense that neither need derivative information be available for the expensive objectives nor are gradients approximated using repeated function evaluations as is the case in finite-difference methods. Instead, a multiobjective trust region approach is used that works similarly to its well-known scalar pendants. Local surrogate models constructed from evaluation data of the true objective functions are employed to compute possible descent directions. In contrast to existing multiobjective trust region algorithms, these surrogates are not polynomial but carefully constructed radial basis function networks. This has the important advantage that the number of data points scales linearly with the parameter space dimension. The local models qualify as fully linear and the corresponding general scalar framework is adapted for problems with multiple objectives. Convergence to Pareto critical points is proven and numerical examples illustrate our findings.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.