Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Behavioral Input-Output Parametrization of Control Policies with Suboptimality Guarantees (2102.13338v2)

Published 26 Feb 2021 in eess.SY, cs.SY, and math.OC

Abstract: Recent work in data-driven control has revived behavioral theory to perform a variety of complex control tasks, by directly plugging libraries of past input-output trajectories into optimal control problems. Despite recent advances, a key aspect remains unclear: how and to what extent do noise-corrupted data impact control performance? In this work, we provide a quantitative answer to this question. We formulate a Behavioral version of the Input-Output Parametrization (BIOP) for the optimal predictive control of unknown systems using output-feedback dynamic control policies. The main advantages of the proposed framework are that 1) the state-space parameters and the initial state need not be specified for controller synthesis, 2) it can be used in combination with state-of-the-art impulse response estimators, and 3) it allows to recover suboptimality results on learning the Linear Quadratic Gaussian (LQG) controller, therefore revealing, in a quantitative way, how the level of noise in the data affects the performance of behavioral methods. Specifically, it is shown that the performance degrades linearly with the prediction error of the behavioral model. We conclude the paper with numerical experiments to validate our results.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube