Large-scale Quantum Approximate Optimization via Divide-and-Conquer (2102.13288v1)
Abstract: Quantum Approximate Optimization Algorithm (QAOA) is a promising hybrid quantum-classical algorithm for solving combinatorial optimization problems. However, it cannot overcome qubit limitation for large-scale problems. Furthermore, the execution time of QAOA scales exponentially with the problem size. We propose a Divide-and-Conquer QAOA (DC-QAOA) to address the above challenges for graph maximum cut (MaxCut) problem. The algorithm works by recursively partitioning a larger graph into smaller ones whose MaxCut solutions are obtained with small-size NISQ computers. The overall solution is retrieved from the sub-solutions by applying the combination policy of quantum state reconstruction. Multiple partitioning and reconstruction methods are proposed/ compared. DC-QAOA achieves 97.14% approximation ratio (20.32% higher than classical counterpart), and 94.79% expectation value (15.80% higher than quantum annealing). DC-QAOA also reduces the time complexity of conventional QAOA from exponential to quadratic.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.