Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Accelerating Large Kernel Convolutions with Nested Winograd Transformation.pdf (2102.13272v2)

Published 26 Feb 2021 in cs.CV and cs.AI

Abstract: Recent literature has shown that convolutional neural networks (CNNs) with large kernels outperform vision transformers (ViTs) and CNNs with stacked small kernels in many computer vision tasks, such as object detection and image restoration. The Winograd transformation helps reduce the number of repetitive multiplications in convolution and is widely supported by many commercial AI processors. Researchers have proposed accelerating large kernel convolutions by linearly decomposing them into many small kernel convolutions and then sequentially accelerating each small kernel convolution with the Winograd algorithm. This work proposes a nested Winograd algorithm that iteratively decomposes a large kernel convolution into small kernel convolutions and proves it to be more effective than the linear decomposition Winograd transformation algorithm. Experiments show that compared to the linear decomposition Winograd algorithm, the proposed algorithm reduces the total number of multiplications by 1.4 to 10.5 times for computing 4x4 to 31x31 convolutions.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: