Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 142 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Cyclic Coordinate Dual Averaging with Extrapolation (2102.13244v4)

Published 26 Feb 2021 in math.OC and cs.LG

Abstract: Cyclic block coordinate methods are a fundamental class of optimization methods widely used in practice and implemented as part of standard software packages for statistical learning. Nevertheless, their convergence is generally not well understood and so far their good practical performance has not been explained by existing convergence analyses. In this work, we introduce a new block coordinate method that applies to the general class of variational inequality (VI) problems with monotone operators. This class includes composite convex optimization problems and convex-concave min-max optimization problems as special cases and has not been addressed by the existing work. The resulting convergence bounds match the optimal convergence bounds of full gradient methods, but are provided in terms of a novel gradient Lipschitz condition w.r.t.~a Mahalanobis norm. For $m$ coordinate blocks, the resulting gradient Lipschitz constant in our bounds is never larger than a factor $\sqrt{m}$ compared to the traditional Euclidean Lipschitz constant, while it is possible for it to be much smaller. Further, for the case when the operator in the VI has finite-sum structure, we propose a variance reduced variant of our method which further decreases the per-iteration cost and has better convergence rates in certain regimes. To obtain these results, we use a gradient extrapolation strategy that allows us to view a cyclic collection of block coordinate-wise gradients as one implicit gradient.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube