Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Consistent Sparse Deep Learning: Theory and Computation (2102.13229v2)

Published 25 Feb 2021 in stat.ML and cs.LG

Abstract: Deep learning has been the engine powering many successes of data science. However, the deep neural network (DNN), as the basic model of deep learning, is often excessively over-parameterized, causing many difficulties in training, prediction and interpretation. We propose a frequentist-like method for learning sparse DNNs and justify its consistency under the Bayesian framework: the proposed method could learn a sparse DNN with at most $O(n/\log(n))$ connections and nice theoretical guarantees such as posterior consistency, variable selection consistency and asymptotically optimal generalization bounds. In particular, we establish posterior consistency for the sparse DNN with a mixture Gaussian prior, show that the structure of the sparse DNN can be consistently determined using a Laplace approximation-based marginal posterior inclusion probability approach, and use Bayesian evidence to elicit sparse DNNs learned by an optimization method such as stochastic gradient descent in multiple runs with different initializations. The proposed method is computationally more efficient than standard Bayesian methods for large-scale sparse DNNs. The numerical results indicate that the proposed method can perform very well for large-scale network compression and high-dimensional nonlinear variable selection, both advancing interpretable machine learning.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yan Sun (309 papers)
  2. Qifan Song (37 papers)
  3. Faming Liang (33 papers)
Citations (23)

Summary

We haven't generated a summary for this paper yet.