Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Random hypergraphs and property B (2102.12968v1)

Published 25 Feb 2021 in math.CO and cs.DM

Abstract: In 1964 Erd\H{o}s proved that $(1+\oh{1})) \frac{\eul \ln(2)}{4} k2 2{k}$ edges are sufficient to build a $k$-graph which is not two colorable. To this day, it is not known whether there exist such $k$-graphs with smaller number of edges. Erd\H{o}s' bound is consequence of the fact that a hypergraph with $k2/2$ vertices and $M(k)=(1+\oh{1}) \frac{\eul \ln(2)}{4} k2 2{k}$ randomly chosen edges of size $k$ is asymptotically almost surely not two colorable. Our first main result implies that for any $\varepsilon > 0$, any $k$-graph with $(1-\varepsilon) M(k)$ randomly and uniformly chosen edges is a.a.s. two colorable. The presented proof is an adaptation of the second moment method analogous to the developments of Achlioptas and Moore from 2002 who considered the problem with fixed size of edges and number of vertices tending to infinity. In the second part of the paper we consider the problem of algorithmic coloring of random $k$-graphs. We show that quite simple, and somewhat greedy procedure, a.a.s. finds a proper two coloring for random $k$-graphs on $k2/2$ vertices, with at most $\Oh{k\ln k\cdot 2k}$ edges. That is of the same asymptotic order as the analogue of the \emph{algorithmic barrier} defined by Achlioptas and Coja-Oghlan in 2008, for the case of fixed $k$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.