Papers
Topics
Authors
Recent
2000 character limit reached

Persistent Homology and Graphs Representation Learning (2102.12926v4)

Published 25 Feb 2021 in cs.LG, cs.CG, cs.CV, and math.AT

Abstract: This article aims to study the topological invariant properties encoded in node graph representational embeddings by utilizing tools available in persistent homology. Specifically, given a node embedding representation algorithm, we consider the case when these embeddings are real-valued. By viewing these embeddings as scalar functions on a domain of interest, we can utilize the tools available in persistent homology to study the topological information encoded in these representations. Our construction effectively defines a unique persistence-based graph descriptor, on both the graph and node levels, for every node representation algorithm. To demonstrate the effectiveness of the proposed method, we study the topological descriptors induced by DeepWalk, Node2Vec and Diff2Vec.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.