Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 138 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Automatic Classification of OSA related Snoring Signals from Nocturnal Audio Recordings (2102.12829v2)

Published 25 Feb 2021 in eess.AS, cs.LG, and cs.SD

Abstract: In this study, the development of an automatic algorithm is presented to classify the nocturnal audio recording of an obstructive sleep apnoea (OSA) patient as OSA related snore, simple snore and other sounds. Recent studies has been shown that knowledge regarding the OSA related snore could assist in identifying the site of airway collapse. Audio signal was recorded simultaneously with full-night polysomnography during sleep with a ceiling microphone. Time and frequency features of the nocturnal audio signal were extracted to classify the audio signal into OSA related snore, simple snore and other sounds. Two algorithms were developed to extract OSA related snore using an linear discriminant analysis (LDA) classifier based on the hypothesis that OSA related snoring can assist in identifying the site-of-upper airway collapse. An unbiased nested leave-one patient-out cross-validation process was used to select a high performing feature set from the full set of features. Results indicated that the algorithm achieved an accuracy of 87% for identifying snore events from the audio recordings and an accuracy of 72% for identifying OSA related snore events from the snore events. The direct method to extract OSA-related snore events using a multi-class LDA classifier achieved an accuracy of 64% using the feature selection algorithm. Our results gives a clear indication that OSA-related snore events can be extracted from nocturnal sound recordings, and therefore could potentially be used as a new tool for identifying the site of airway collapse from the nocturnal audio recordings.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.