Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Distributional robustness in minimax linear quadratic control with Wasserstein distance (2102.12715v1)

Published 25 Feb 2021 in eess.SY, cs.SY, and math.OC

Abstract: To address the issue of inaccurate distributions in practical stochastic systems, a minimax linear-quadratic control method is proposed using the Wasserstein metric. Our method aims to construct a control policy that is robust against errors in an empirical distribution of underlying uncertainty, by adopting an adversary that selects the worst-case distribution. The opponent receives a Wasserstein penalty proportional to the amount of deviation from the empirical distribution. A closed-form expression of the finite-horizon optimal policy pair is derived using a Riccati equation. The result is then extended to the infinite-horizon average cost setting by identifying conditions under which the Riccati recursion converges to the unique positive semi-definite solution to an algebraic Riccati equation. Our method is shown to possess several salient features including closed-loop stability, and an out-of-sample performance guarantee. We also discuss how to optimize the penalty parameter for enhancing the distributional robustness of our control policy. Last but not least, a theoretical connection to the classical $H_\infty$-method is identified from the perspective of distributional robustness.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)