Neural content-aware collaborative filtering for cold-start music recommendation (2102.12369v3)
Abstract: State-of-the-art music recommender systems are based on collaborative filtering, which builds upon learning similarities between users and songs from the available listening data. These approaches inherently face the cold-start problem, as they cannot recommend novel songs with no listening history. Content-aware recommendation addresses this issue by incorporating content information about the songs on top of collaborative filtering. However, methods falling in this category rely on a shallow user/item interaction that originates from a matrix factorization framework. In this work, we introduce neural content-aware collaborative filtering, a unified framework which alleviates these limits, and extends the recently introduced neural collaborative filtering to its content-aware counterpart. We propose a generative model which leverages deep learning for both extracting content information from low-level acoustic features and for modeling the interaction between users and songs embeddings. The deep content feature extractor can either directly predict the item embedding, or serve as a regularization prior, yielding two variants (strict and relaxed) of our model. Experimental results show that the proposed method reaches state-of-the-art results for a cold-start music recommendation task. We notably observe that exploiting deep neural networks for learning refined user/item interactions outperforms approaches using a more simple interaction model in a content-aware framework.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.