Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Learning-Augmented Sketches for Hessians (2102.12317v2)

Published 24 Feb 2021 in cs.LG and cs.DS

Abstract: Sketching is a dimensionality reduction technique where one compresses a matrix by linear combinations that are chosen at random. A line of work has shown how to sketch the Hessian to speed up each iteration in a second order method, but such sketches usually depend only on the matrix at hand, and in a number of cases are even oblivious to the input matrix. One could instead hope to learn a distribution on sketching matrices that is optimized for the specific distribution of input matrices. We show how to design learned sketches for the Hessian in the context of second order methods. We prove that a smaller sketching dimension of the column space of a tall matrix is possible, given an oracle that can predict the indices of the rows of large leverage score. We design such an oracle for various datasets, and this leads to a faster convergence of the well-studied iterative Hessian sketch procedure, which applies to a wide range of problems in convex optimization. We show empirically that learned sketches, compared with their "non-learned" counterparts, do improve the approximation accuracy for important problems, including LASSO and matrix estimation with nuclear norm constraints.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.