Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sparse online variational Bayesian regression (2102.12261v2)

Published 24 Feb 2021 in stat.CO, cs.NA, math.NA, math.OC, and stat.ML

Abstract: This work considers variational Bayesian inference as an inexpensive and scalable alternative to a fully Bayesian approach in the context of sparsity-promoting priors. In particular, the priors considered arise from scale mixtures of Normal distributions with a generalized inverse Gaussian mixing distribution. This includes the variational Bayesian LASSO as an inexpensive and scalable alternative to the Bayesian LASSO introduced in [65]. It also includes a family of priors which more strongly promote sparsity. For linear models the method requires only the iterative solution of deterministic least squares problems. Furthermore, for p unknown covariates the method can be implemented exactly online with a cost of $O(p3)$ in computation and $O(p2)$ in memory per iteration -- in other words, the cost per iteration is independent of n, and in principle infinite data can be considered. For large $p$ an approximation is able to achieve promising results for a cost of $O(p)$ per iteration, in both computation and memory. Strategies for hyper-parameter tuning are also considered. The method is implemented for real and simulated data. It is shown that the performance in terms of variable selection and uncertainty quantification of the variational Bayesian LASSO can be comparable to the Bayesian LASSO for problems which are tractable with that method, and for a fraction of the cost. The present method comfortably handles $n = 65536$, $p = 131073$ on a laptop in less than 30 minutes, and $n = 105$, $p = 2.1 \times 106$ overnight.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.