Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 108 tok/s
Gemini 3.0 Pro 55 tok/s Pro
Gemini 2.5 Flash 145 tok/s Pro
Kimi K2 205 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Convergence rates for gradient descent in the training of overparameterized artificial neural networks with biases (2102.11840v1)

Published 23 Feb 2021 in cs.LG, cs.NA, math.NA, and math.PR

Abstract: In recent years, artificial neural networks have developed into a powerful tool for dealing with a multitude of problems for which classical solution approaches reach their limits. However, it is still unclear why randomly initialized gradient descent optimization algorithms, such as the well-known batch gradient descent, are able to achieve zero training loss in many situations even though the objective function is non-convex and non-smooth. One of the most promising approaches to solving this problem in the field of supervised learning is the analysis of gradient descent optimization in the so-called overparameterized regime. In this article we provide a further contribution to this area of research by considering overparameterized fully-connected rectified artificial neural networks with biases. Specifically, we show that for a fixed number of training data the mean squared error using batch gradient descent optimization applied to such a randomly initialized artificial neural network converges to zero at a linear convergence rate as long as the width of the artificial neural network is large enough, the learning rate is small enough, and the training input data are pairwise linearly independent.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.