Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Improving Deep Learning Sound Events Classifiers using Gram Matrix Feature-wise Correlations (2102.11771v1)

Published 23 Feb 2021 in cs.SD, cs.LG, and eess.AS

Abstract: In this paper, we propose a new Sound Event Classification (SEC) method which is inspired in recent works for out-of-distribution detection. In our method, we analyse all the activations of a generic CNN in order to produce feature representations using Gram Matrices. The similarity metrics are evaluated considering all possible classes, and the final prediction is defined as the class that minimizes the deviation with respect to the features seeing during training. The proposed approach can be applied to any CNN and our experimental evaluation of four different architectures on two datasets demonstrated that our method consistently improves the baseline models.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.