Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Gradient-adjusted Incremental Target Propagation Provides Effective Credit Assignment in Deep Neural Networks (2102.11598v3)

Published 23 Feb 2021 in cs.LG and cs.AI

Abstract: Many of the recent advances in the field of artificial intelligence have been fueled by the highly successful backpropagation of error (BP) algorithm, which efficiently solves the credit assignment problem in artificial neural networks. However, it is unlikely that BP is implemented in its usual form within biological neural networks, because of its reliance on non-local information in propagating error gradients. Since biological neural networks are capable of highly efficient learning and responses from BP trained models can be related to neural responses, it seems reasonable that a biologically viable approximation of BP underlies synaptic plasticity in the brain. Gradient-adjusted incremental target propagation (GAIT-prop or GP for short) has recently been derived directly from BP and has been shown to successfully train networks in a more biologically plausible manner. However, so far, GP has only been shown to work on relatively low-dimensional problems, such as handwritten-digit recognition. This work addresses some of the scaling issues in GP and shows it to perform effective multi-layer credit assignment in deeper networks and on the much more challenging ImageNet dataset.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.