Emergent Mind

Deep Deterministic Uncertainty: A Simple Baseline

(2102.11582)
Published Feb 23, 2021 in cs.LG and stat.ML

Abstract

Reliable uncertainty from deterministic single-forward pass models is sought after because conventional methods of uncertainty quantification are computationally expensive. We take two complex single-forward-pass uncertainty approaches, DUQ and SNGP, and examine whether they mainly rely on a well-regularized feature space. Crucially, without using their more complex methods for estimating uncertainty, a single softmax neural net with such a feature-space, achieved via residual connections and spectral normalization, outperforms DUQ and SNGP's epistemic uncertainty predictions using simple Gaussian Discriminant Analysis post-training as a separate feature-space density estimator -- without fine-tuning on OoD data, feature ensembling, or input pre-procressing. This conceptually simple Deep Deterministic Uncertainty (DDU) baseline can also be used to disentangle aleatoric and epistemic uncertainty and performs as well as Deep Ensembles, the state-of-the art for uncertainty prediction, on several OoD benchmarks (CIFAR-10/100 vs SVHN/Tiny-ImageNet, ImageNet vs ImageNet-O) as well as in active learning settings across different model architectures, yet is computationally cheaper.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.